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Analysis of Recent Deep-Learning-Based Intrusion
Detection Methods for In-Vehicle Network

Kai Wang™', Aiheng Zhang"', Haoran Sun, and Bailing Wang

Abstract—The development and popularity of vehicle-to-
everything communication have caused more risks to the in-
vehicle networks security. As a result, an increasing number
of various and effective intrusion detection methods appear to
guarantee the security of in-vehicle networks, especially deep-
learning-based methods. Nevertheless, the state-of-the-art deep-
learning-based intrusion detection methods lack a quantitative
and fair horizontal performance comparison analysis. Also, they
have no comparative analysis of the detection capability for
the unknown attacks as well as on the time and hardware
resource consumption of their intelligent intrusion detection
models. Therefore, this paper investigates ten representative
advanced deep-learning-based intrusion detection methods and
illustrates the characteristics and advantages of each method.
Moreover, quantitative and fair experiments are set to make
horizontal comparison analyses. Also, this study provides some
significant suggestions on baseline method selection and valuable
guidance, for the direction of future research about lightweight
models and the ability to detect unknown attacks.

Index Terms—In-vehicle intrusion detection, deep learning,
neural network, vehicular networks.

I. INTRODUCTION

EHICLE-TO-EVERYTHING (V2X) communication, as
V well as vehicular networking, has become a popular trend
as a key functional component of the emerging intelligent
transportation system in the current information society [1].
In recent years, more and more manufacturers have embedded
communication protocols in cars, such as Controller Area Net-
work (CAN), to realize various intelligent services and even
autonomous driving [2]. However, more network connections
provide more opportunities for attackers, and there are a large
number of evolving new attacks in cyberspace, resulting in
more risks to vehicle security and passenger safety.

CAN bus, although built by Bosch in 1985, is still in fact
the de-facto standard for the communications of Electronic
Control Units (ECUs) in the in-vehicle networks (IVNs) of
modern cars, due to its simplicity, low prices, high effi-
ciency, and stability. In detail, CAN is a message-oriented
broadcast-based serial communication protocol, through which
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the ECUs handle the information transmission concerning all
aspects of the car behaviors. Specific CAN messages contain
communication priority and various control field information,
but neither information about the sender or receiver ECUs
nor message authentication mechanisms are embedded, which
significantly degrades both security and safety [3].

To solve the security and safety problems, many recent stud-
ies about intrusion detection on CAN bus have emerged [4].
Some surveys for IVNs evaluated the comparative perfor-
mance of previous intrusion detection methods, such as [5],
[6] and [7], respectively based on traditional statistics, machine
learning, and ensemble learning, but their performances are not
good as deep-learning-based methods. For example, the tradi-
tional anomaly detection methods based on time statistics have
been proved quite fragile [8]. Moreover, message authentica-
tion or encryption will lead to inapplicable performance with
unacceptable delay in resource-constrained CAN devices [9].
A method based on segmented federated learning [10] is
lightweight and can deal with imbalanced data using servers,
but the computing mechanism between vehicle and external
server communication is complex and has large consumption.
Therefore, we only focus on deep-learning-based methods with
local vehicle limited resources computing.

Among all, intrusion detection using deep learning tech-
nologies may be the most dominant approach for IVNs, for
its ability to process an increased amount of data without
requiring prior knowledge of domain-specific expertise [11],
[12]. There are several surveys on the topic of intrusion
detection system (IDS) using deep learning technologies for
the vehicular CAN bus [3], [4], [13], [14], [15]. However,
they do not have a fair horizontal performance comparison
in an identical dataset as well as the same experimental
settings, making it very difficult to infer the usage scenarios
and performance differences of existing solutions. Also, the
baseline methods the experiments conducted in these studies
are relatively traditional and backward in performance. Fur-
thermore, they lack an evaluation of the model’s ability to
detect unknown attacks (e.g., zero-day attacks [16]), which
reflects the degree of safety and security that models can
provide, and resource consumption to adapt to constrained
embedded resource situations.

Hence, our main work and contribution are shown
below:

o We select the most representative and advanced methods
with the compared performance advantages as the repre-
sentative of each class of algorithms, carry out horizontal
comparison experiments, and get more fair comparative
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results of detection effect. Thus, we can provide baseline
selection suggestions for future research.

o We study and evaluate the inference delay and memory
consumption of 10 representative algorithms in order
to make them adapt to the limited embedded resource
environment of [VNs. And, we present a comprehensive
analysis of the models’ adaptability.

o We evaluate the detection ability of those 10 models
toward unknown attacks, and find that the existing algo-
rithms have weak detection ability for unknown attacks,
or even do not take unknown attacks into consideration.
According to this point, we put forward the future devel-
opment direction of intrusion detection technology in the
in-vehicle network.

The paper is organized as follows. Section II intro-
duces the promising deep-learning-based IDSs in recent
years. Section III designs the comparative experimental
method. Section IV describes the experimental results and
analyses. Section V gives suggestions on future research direc-
tions in the vehicular intrusion detection areas, and Section VI
concludes this study. For convenient reading, we provide a list
of abbreviations in Table VII in the appendix.

II. STATE-OF-THE-ART DEEP-LEARNING-BASED
INTRUSION DETECTION METHODS IN RECENT YEARS

Since the “Hacking and Countermeasure Research Lab”
(HCR Lab, http://ocslab.hksecurity.net) contributes to the data-
driven security field by sharing their datasets (e.g., the
CAN dataset for intrusion detection [17] and the car-hacking
dataset [18]) to the public, the data-driven security equipped
with deep learning models for intrusion detection in IVNs,
especially in CAN bus, has been exploited extensively in past
years.

In this study, we have done a great number of literature
researches about IDSs using deep learning technologies. To
compare a wider variety of algorithms, we selected one
algorithm from each category with comparative advantages
as the representative algorithm. The algorithms selected have
comprehensive coverage of a wide range of model structures
and training or inference types, such as based on convolutional
neural network (CNN) structure [18], Long Short Term Mem-
ory (LSTM) structure [19], Generative Adversarial Network
(GAN) network structure [20] and autoencoder structure [9],
[21]. And, they also involve supervised and unsupervised
models, binary and multi-classification models. Finally, ten up-
to-date models with the best performance in each category are
selected and previous study details are shown in Table I.

For instance, the Reduced Inception-ResNet model pro-
posed in [18] is one typical state-of-the-art solution, which is
taken as the representative algorithm based on CNN structure,
because of its almost perfect detection performance and ability
to process large amounts of data. The CANTransfer in [22]
is another advanced IDS, which is chosen as the representa-
tive algorithm using Transfer Learning based on Convolution
LSTM (ConvLSTM) structure. Due to the advantage of spatial-
temporal characteristics of the ConvLSTM, CANTransfer can
firstly extract knowledge from plenty of normal data as well as
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previously known but limited intrusion data, and then use the
one-shot transfer learning technology to enable the detection
ability for new intrusions. The one-shot transfer learning refers
to training the model with only hints of a new type of intrusion
sample and then migrating the newly learned mapping relation
to the original model. Hence, the generalization ability of the
model can be enhanced and over-biasing problems due to the
imbalanced datasets are more likely to be solved.

The CAN-ADF [23] is an ensemble framework of rule-
based and recurrent neural network (RNN)-based models to
detect typical in-vehicle intrusions (e.g., hazardous Denial of
Service (DoS), fuzzing and replay attacks), which represents
the RNN-based structures and multi-classification models. The
work in [19] proposes to detect intrusion behaviors via anom-
aly analysis based on the time series prediction (TSP) method
on the data field of every CAN message, using a typical
LSTM structure, but get advanced detection performance.
The optimized deep denoising autoencoder (O-DAE) proposed
in [9] employs an evolutionary-based optimization algorithm
namely ecogeography-based optimization (EBO) into each
layer of the deep denoising autoencoder for training without
premature convergence. O-DAE is selected as the representa-
tive algorithm of the autoencoder structure. The work in [20]
builds the enhanced generative adversarial network (E-GAN),
which is based on the basic principle of the GAN model
in [27] but enhances the GAN discriminator by adding a CAN
communication matrix. That is also a state-of-the-art solution
as a representative algorithm of GAN structure.

The lightweight dynamic autoencoder network (LDAN)
in [21] is another representative of the autoencoder structure.
Its main characteristic is the lightweight design which reduces
the computational cost and model size of the deep learning
method. The autoencoder and classifier network in LDAN are
constructed with lightweight neural units. Although the LDAN
model in the original study was trained based on non-V2X
datasets (UNSW-15, KDD99), its characteristic of unsuper-
vised and lightweight is quite suitable for the limited resources
of embedded IVNs, which is also the reason we selected it.
We also investigated other intrusion detection algorithms not
proposed for vehicular networks, which are inapplicable to
vehicular network environments or have inferior performance
to LDAN, and are excluded in this paper.

In addition, there are some advanced integrated structures,
which are difficult to categorize into a single structure but are
pioneering. We choose three models combined with typical
and basic structures which have high detection performance.
For example, a model named HyDL-IDS was proposed in [24],
which is a combination of CNN and LSTM structures using
the spatial and temporal representation of IVN traffic. Another
work in [25] is CANet combined with LSTM and autoen-
coder structures. Because of the characteristics of these two
structures, CANet is an unsupervised learning method and can
also capture the temporal dynamics of CAN messages. Rec-
CNN model in [26] is a CNN-based structure combined with
recurrence plots to generate data, which adds the temporal
dependency of a sequence into image data input to the model.

However, the limitation of all the above works is that they
lack a horizontal comparison with each other and evaluations
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THE REPRESENTATIVE STATE-OF-THE-ART COUNTERMEASURES IN PREVIOUS STUDIES

Research Key Technique Categories Evaluation Evaluation Baseline Contribution

Work Types Dataset Methods

Reduced reduced supervised binary car-hacking dataset 1) LSTM, 1) reduced the unnecessary

Inception- Inception- classification 2) ANN, complexity in the architecture

ResNet [18] ResNet model 3) SVM, of the Inception-ResNet model

4) KNN, to fit the CAN messages,

5) NB, 2) provided a method to

6) DT preprocess CAN traffic data
into a two-dimension pattern.

CANTransfer convolutional supervised binary CAN dataset for 1) OTIDS, provided a preliminary

[22] LSTM classification | intrusion detection 2) OCSVM, consideration for enhancing the

3) IF, generalization ability of the
4) RNN with model toward more domains.
Heuristics

CAN-ADF ensemble of supervised multi- CAN dataset for OTIDS designed for multiple

[23] rule-based and classification | intrusion detection classifications with a little
RNN-based consideration of unknown
detection attack detection

TSP [19] LSTM with two | supervised binary privately captured None 1) ability of detection on
kinds of input classification | CAN traffic from a known attacks using the LSTM
data format branded vehicle algorithm without inspecting

the protocol semantics,

2) demonstrated the influence
of different data field forms on
different detection
performances.

O-DAE [9] deep denoising supervised binary 1) privately captured 1) ANN with optimized the deep denoising
autoencoder classification CAN traffic, two hidden autoencoder with high
network 2) simulated dataset layers, performance by employing an

from CANoe 2) KNN, ecogeography-based
software, 3) DT optimization.

3) CAN dataset for

intrusion detection

LDAN [21] dynamic supervised binary 1) KDD99 dataset, 1) NB, 1) designed new lightweight
autoencoder classification 2) UNSW-NB15 2) KNN, neural units with expansion and
network built dataset 3) SVM, compression structure,
with lightweight 4) DNN, 2) designed a new method to
neural units and 5) LSTM, compute the loss between
lightweight 6) DAN autoencoder and classifier,
structures 3) ability to efficiently extract

high-level representation
features.

E-GAN [20] enhanced GAN unsupervised | binary 1) privately captured GAN 1) enhanced the GAN
discriminator classification | CAN traffic from an discriminator to be able to
with CAN online CAN network detect tampering attacks,
communication prototype, 2) introduced the useful CAN
matrix 2) privately captured communication matrix for a

CAN traffic from vehicle model.
real vehicle

HyDL-IDS combination of supervised binary car-hacking dataset 1) NB, 1) proposed method to

[24] CNN and classification 2) DT, characterize the behavior of
LSTM 3) MLP, CAN traffic based on spatial

4) CNN, and temporal representation,

5) LSTM 2) combined the CNN and
LSTM structures for extracting
spatial and temporal features.

CANet [25] combination of unsupervised | binary 1) privately captured 1) LSTM, 1) proposed a novel network
LSTM and classification real CAN traffic, 2) autoencoder combining LSTM and
autoencoder 2) synthetic CAN autoencoder structures,

data 2) ability to take
interdependencies of signals of
multiple CAN IDs.

Rec-CNN [26] | ensemble of supervised both binary 1) privately captured Reduced 1) provided methods using
RPs and CNN and multiple | CAN traffic, inception- recurrence plot to get the

classifica- 2) car-hacking ResNet temporal dependency of
tions dataset sequence data and convert it to

image,

2) designed the network only
with two-layered CNN which is
quite lightweight.
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of resource consumption. These works, except CAN-ADE,
lack consideration for unknown attack detection capabilities
during the design phase. As a result, our main work is
to re-implement these models in a consistent experimental
environment and to obtain a fair comparison result on both
performance comparison and resource consumption. Also,
we evaluate the capabilities of unknown attack detection for
each model.

III. QUANTITATIVE EXPERIMENTAL METHOD

To comprehensively explore the comparative performance
advantages and resource consumption in a fair experimental
environment, all of the ten representative methods above are
implemented from scratch in this section. Settings of the fair
and quantitative experimental are described below.

A. Physical Configurations

The artificial intelligent server used for all the experiments
is equipped with an Intel(R) Xeon(R) CPU E5-2640 v4 @
2.40GHz, a GPU of NVIDIA-SMI 450.80.02, and a 128GB
memory. In addition, the operating system is CentOS 7 and
the deep learning methods are implemented with TensorFlow
2.0 and NumPy.

B. Real Datasets

To evaluate the practical performance of related intrusion
detection methods, the datasets used in experiments should be
collected from real cars in real scenarios rather than theoretical
hypotheses. Up to now, it is difficult to collect CAN traffic data
of IVN. There are two different but all real and widely used
open datasets, the CAN dataset for intrusion detection [17]
(termed as dataset-1) and the car-hacking dataset [18] (termed
as dataset-2), which are constructed by logging the real-time
CAN message via the on-board diagnostic (OBD-II) port of
two running vehicles (KIA Soul and Hyundai Sonata) with
message attacks.

However, the dataset-1 loses data label information. Among
the 10 representative methods, there are both supervised mod-
els (i.e. the models must be trained with the help of labeled
data) and unsupervised models. Also, we need to use the same
dataset in our quantitative experiments. Thus, only dataset-2
is adopted as the benchmark dataset to carry out comparison
experiments in our study.

Dataset-2 contains normal CAN messages and four typical
attack data: DoS attack, fuzzy attack, spoofing the drive
gear attack and spoofing the RPM gauze attack. They are
stored in five .csv files respectively. Each piece of data
contains four data features, including timestamp, identifier
(ID, in hexadecimal format), data length code (DLC, valued
from O to 8) and data payload (8 bytes), and the label of
a CAN message. It also has a very imbalanced style, where
there are 988,987 attack-free CAN messages, and 14,237,978
normal messages (except for the attack-free ones) mixed with
2,331,497 anomaly messages, as shown in Table II.

C. Attack Scenarios

In this study, three types of network-based message attacks,
DoS attack, fuzzy attack and impersonation attack, are used
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TABLE 11
CAR-HACKING DATASET

Attack Type # of # of # of

messages normal attack
messages messages

DoS Attack 3,665,771 3,078,250 587,521

Fuzzy Attack 3,838,860 3,347,013 491,847
Spoofing the drive gear 4,443,142 3,845,890 597,252
Spoofing the RPM gauze 4,621,702 3,966,805 654,897

GIDS: Attack-free (normal) 988,987 988,872 0

Two types of Flags in the dataset: T or R.
T represents the attack messages while R represents normal.

TABLE III
ATTACK CLASSIFICATION FOR INTRUSION DETECTION

Type Classification
DoS Attack
Fuzzy Attack

Impersonation Attack

Known, used for model training and predicting

Unknown, only used for the model predicting

Unknown, only used for the model predicting

for the evaluation of selected detection methods. They can
all attack vehicles via network connections and have slightly
different attacking behaviors yet huge different levels of detec-
tion difficulty. In all the comparative experiments in this paper,
as shown in Table III, the DoS attack is used as training data
that makes the models learn how to distinguish attacks, which
we called known attacks. Fuzzy and impersonation attacks are
treated as unknown threats that the models have never met
before in the training process (that is, they are never used for
training but directly used for inference, which is also known
as predicting process, see Table IV). They are used to test
whether the current algorithm has the ability to detect not only
known attacks but also unknown and sophisticated threats.

As illustrated in Fig. 1 where nodes A and C are legitimate
ECUs in the target vehicle while node B is the attacker, the
details of these attacks are given as follows.

1) DoS attack: Since the CAN bus is a shared communica-
tion channel with a broadcast nature, all the ECU nodes
(A, B and C) send messages with different priorities
determined by embedded CAN IDs (e.g., 0 x 2CO in
message from node A and 0 x5A2 from C). Specifically,
a lower CAN ID means a higher priority to use the CAN
bus for communications. Based on this, a DoS attacker
(node B) aims to flood the CAN bus with numerous
forged messages with low ID values (even the lowest
0 x 000 with the highest priority) in every short time
interval. Thus, almost all the communication resources
are occupied so that messages from other nodes will
be delayed or denied from publishing into the same
channel. In this case, communication in the involved
CAN bus will be created for other ECUs with unac-
ceptable time latency. This may lead to system failure,
for example, unable to respond to driver’s commands in
time and cause traffic accidents.
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Fig. 1.
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Three types of network-based attacks in dataset-1 (From [17]).

TABLE IV

(c) Impersonation attack

THE PARTITION OF THE CAN DATASET FOR TRAINING AND TESTING

Training Set Testing Set
Attack Type
# of normal message | # of attack message # of normal message | # of attack message
GIDS: Attack-free (normal) 692,209 0 0 0

DoS Attack 2,154,775 411,264 153,912 29,355

Fuzzy Attack 0 0 167,350 24,592
Spoofing the drive gear 0 0 138,326 29,862
Spoofing the RPM gauze 0 0 114,509 32,744

Fuzzing attack: In this type of attack scenario, fake mes-
sages sent from malicious ECUs intrude into the CAN
bus at a slower rate than DoS attack. However, instead
of using low ID values like DoS attack, fuzzy attack
has random ID values, which avoids the vulnerability
of obvious detection characteristics. A fuzzy attack can
cause unexpected malfunctions such as an abrupt shift
in a vehicle gearbox or an error reminder from the
dashboard of a vehicle, thus, driving safety will be seri-
ously impacted. It is very challenging to achieve simple
detection based on some unique features, especially for
the fuzzy attack that sends messages at the same rate and
with the same IDs (e.g., 0x2C0 and 0 x5A2 in Fig. 1(b))
as normal CAN messages. Therefore, more sophisticated
countermeasures are required to detect fuzzy attacks.
Impersonation attack: This attack can realize unautho-
rized service access by eavesdropping or spoofing legit-
imate authentication credentials, such as replaying some
previously sniffed CAN messages from other ECUs [22],
spoofing the drive gear and the RPM gauze [18]. Attack-
ers can manipulate the drive gear to a given constant
but valid value (e.g., 0 x 2C0 in Fig. 1(c)) by using an
impersonation node (e.g., node B) which assumes the
identity of the legitimate node A connected in the CAN
bus, resulting in legitimate gear abnormal behavior. This
type of attack generally intrudes into the CAN bus at a
reasonable rate that seems perfectly normal, making it
very difficult to detect.

D. Experimental Setup for Model Training and Predicting

To

make a horizontal comparison among the recent state-

of-the-art intrusion detection methods, the quantitative experi-
ments are conducted, but we retain the characteristics of each

model and their personalized optimal hyperparameter settings.
The details of our experimental setup are described in this part.

1)

2)

3)

The training parameters: Because all the detection meth-
ods in this comparison experiment are based on deep
learning models, we need to search for the optimal
hyperparameters for each model in order to achieve the
best effect of them. Therefore, we provide a 3-fold
cross-validation strategy to get the best hyperparameters
for each model and avoid overfitting. The average loss
curves of 3-fold cross-validation are shown in Fig. 2.
The point with the lowest loss value in the validation
curve is the optimal epoch of the corresponding model.
For other hyperparameters, we also follow the methods in
the original studies to get the best ones. For example, [26]
proposed to select the hyperparameters for Rec-CNN
models using an algorithm called Hyperband which is
also used in our study.

The partition of the dataset: We designed the experiments
not only to evaluate the performance of detecting known
attacks but also to evaluate whether these intrusion detec-
tion methods have the ability to detect unknown attacks.
As shown in Table IV, 70% of normal and DoS attack
messages are taken as a training set, and we randomly
take consecutive 5% messages from the remaining 30%
as a testing set for each test. Especially, CANTransfer is
also proposed to use one-shot transfer learning in [22]
to detect unknown attacks. Therefore, we evaluate the
effect of one-shot transfer learning by adding a hint
(16 messages) of fuzzy attack data as the training set
for transfer learning, compared with the zero-shot method
(original CANTransfer without hints of data for training).
The data pre-processing: The data pre-processing meth-
ods fully follow the original studies of each proposed
intrusion detection model. The details of pre-processing
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Fig. 2. The average loss value of training and validation process for each
model under 3-fold cross-validation strategy.

for each model are shown in Table V. Window size
means how many consecutive pieces of data make up a
group and form a matrix. 11-feature data is obtained from
the original 4-feature data (described in Section III-B,
Dataset-2) by subdividing the 64 bits data payload feature
into eight features (D1-D8).

E. Comparative Evaluation Metrics

In-vehicle intrusion detection technology is radically
designed for practical implementation in automotive industries
to ensure the security of IVNs and the safety of passengers.
Therefore, the detection performance should be evaluated from
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TABLE V
THE DATA PRE-PROCESSING FOR INTRUSION DETECTION MODELS

Models

Reduced
Inception-ResNet
[18]
CANTransfer A matrix of 11-features CAN data with 40 window size using 2D
[22] spatial transformation proposed in [22], 4*4*40*11.

Pre-processing
A matrix of 29 bits CAN ID with 29 window size, 29%29.

CAN-ADF [23] A matrix of 11-features CAN data with 40 window size and 256

channels, 40%11%256.

TSP [19] A vector of 64 bits binary CAN data payload.

O-DAE [9] A vector of the combination of 29 bits CAN ID and 64 bits binary
CAN data payload.

LDAN [21] The combination of 29 bits CAN ID and 64 bits binary CAN data
payload is reduced to the dimension of 30 by the PCA algorithm,
then forming a matrix with 30 window size, 30*30.

E-GAN [20] A matrix of 29 bits CAN ID with 29 window size, 29%29.

HyDL-IDS [24] A matrix of 8-features CAN data payload with 32 window size,

8+%32.

CANet [25] A matrix of 29 bit CAN ID with 29 window size, 29%29.

Rec-CNN [26] A matrix of 29 bit CAN ID with 29 window size, 29%29. After

encoding by recurrence plot, a 128*128 matrix is generated.

all aspects, including the running performance in practical and
the detection performance.

1) Evaluation Metrics for Running Performance: The run-
ning performance is mainly reflected in time consumption
and hardware resource consumption. In our study, the time
consumption is assessed in two phases: training and predicting.
The average training time per epoch is taken to evaluate
whether the detection methods are lightweight enough. The
average predicting time per message is crucial for the security
of IVNs. For high-speed cars, serious traffic accidents may
occur if they are attacked and the intrusion is not detected in
time. Memory usage is taken to evaluate the hardware resource
consumption. If excessive resources are consumed, it will also
affect the normal operation of ECU and cause security risks.

2) Evaluation Metrics for Detection Performance: The
experimental results are recorded in confusion matrices,
including four possibilities, true positive (TP), true negative
(TN), false positive (FP) and false negative (FN), defined as
follows.

o TP - attack samples correctly labeled anomalous.

e TN - normal samples correctly labeled normal.

o FP - normal samples incorrectly labeled anomalous.
o FN - attack samples incorrectly labeled normal.

To achieve a comprehensive evaluation of detection meth-
ods, we calculated some metrics from confusion matrices.
The metrics are accuracy, precision, recall, FPR, FNR and
F1-score.

Defined in Equation (1), accuracy is a global evaluation
metric that is defined by the ratio of the sum of TP and TN
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to all the predicted data.

TP+TN
Accuracy = (1)
TP+TN+FP+FN

Precision and recall are two important metrics, reflecting
the model’s ability to extract and distinguish attack samples.
Precision is the ratio of TP to the number of samples detected
as attacks, as defined in Equation (2). Recall, also called true
positive rate (TPR), is defined by the ratio of TP to the number

of actual attack samples, as defined in Equation (3).

. TP
Precision = —— 2)
TP+ FP
TP
Recall = ———— 3)
TP+ FN

Besides, false positive rate (FPR) and false negative rate
(FNR) are also evaluation metrics, describing the probability
of detection errors. FPR is the ratio of FP to the number of
actual normal samples, as defined in Equation (4). FNR is the
ratio of FN to the number of actual attack samples, as defined
in Equation (5), which is complementary to recall.

FP
FPR= — )
FP+TN
FN
FNR= — 5)
TP+ FN

However, the testing dataset has a very imbalanced style,
which leads to biased results. ROC Area Under the Curve
(AUC) is a common metric to deal with data imbalance. ROC
curve refers to a graph whose horizontal axis is FPR and
vertical axis is TPR. It shows the relationship between FPR
and TPR with changing threshold value range. When ROC
AUC is close to 1, the model has high performance.

Furthermore, to evaluate the model comprehensively from
a positive perspective. We used a metric called F-score, which
integrates precision and recall together by adding weight
coefficient £, as defined in Equation (6).

Precision - Recall
(B% - Precision) + Recall

Fy= (1442 ©)
In this study, we took f = 1 and then got the
standard Fl-score, reflecting the comprehensive evaluation
with the balance between recall and precision. Combining
Equations (2), (3) and (6), Fl-score is calculated as:

TP

=Ty EEEN O

F

In summary, we took confusion matrices, accuracy,
precision, recall, FPR, Fl-score and ROC curves to com-
prehensively evaluate the detection performance of models.
We discarded the FNR metric just because it had been implied
in recall (recall =1 — FNR).

IV. RESULTS AND ANALYSIS
A. Running Performance Evaluation

Since the running performance of intrusion detection models
has an important influence on vehicle safety and security,
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Fig. 4. The memory consumption of ten representative models during

inference process.

we analyzed the time and memory consumption of the 10 rep-
resentative models to evaluate their suitability under resource-
limited on-board environment. The model with less time and
memory consumption is considered more lightweight, because
the time consumption is related to the depth and computational
complexity of models, and the memory consumption can
reflect the complexity of model parameters and the size of
models.

The experimental results of average training time and pre-
dicting time consumption are shown in Fig. 3. It demonstrates
that the Rec-CNN model has less time consumption in both
the training process and inference process due to the only
5 network layers of the Rec-CNN model [26]. On the contrary,
Reduced Inception-ResNet has a relatively deep and complex
network structure [18]. It shows a result of the longest training
time and predicting time as expected, about 25 min per epoch
and 1.5633 ms per message respectively. Although O-DAE
and LDAN are both based on autoencoder structure, LDAN
uses the dynamic network completely consisting of lightweight
units, which makes it less time consumption than O-DAE.

In Fig. 4, it shows the memory usage of 10 representative
models when they predict CAN messages. We concern more
about the inference process than the training process in our
study under the restricted on-board conditions, since the infer-
ence process is on ECUs while the training process is offline.
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TABLE VI
THE DETECION PERFORMANCE OF TEN METHODS UNDER ALL TYPES OF ATTACKS

Accuracy | Precision | Recall FPR F1-score

DoS Attack (Known) 0.9993 0.9995 0.9963 | 0.0001 0.9980
Reduced Inception-ResNet Fuzzy Attack 0.8730 0 0 0.0002 -
Gear Spoofing Attack 0.8223 0 0 0.0001 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

DoS Attack (Known) 0.9991 0.9990 0.9951 | 0.0002 0.9971
Fuzzy Attack 0.8718 0 0 0.0001 -

CANTransfer Fuzzy Attack (1-shot) 0.8664 0.9794 0.0309 | 0.0001 0.0599
Gear Spoofing Attack 0.8223 0 0 0.0002 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

DoS Attack (Known) 0.9938 0.9826 0.9785 | 0.0033 0.9805

CAN-ADF Fuzzy Attack 0.8715 0.0505 0.0002 | 0.0006 0.0004
Gear Spoofing Attack 0.8222 0 0 0.0004 -

RPM Spoofing Attack 0.7769 0.1200 0.0005 | 0.0012 0.0011

DoS Attack (Known) 0.9802 0.9100 0.9728 | 0.0183 0.9403
TSP Fuzzy Attack 0.8714 0 0 0.0005 -
Gear Spoofing Attack 0.8221 0 0 0.0005 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

DoS Attack (Known) 0.9933 0.9742 0.9843 | 0.0050 0.9792
O-DAE Fuzzy Attack 0.8714 0 0 0.0006 -
Gear Spoofing Attack 0.8222 0 0 0.0004 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

DoS Attack (Known) 0.9806 0.9099 0.9756 | 0.0184 0.9416
LDAN Fuzzy Attack 0.8717 0 0 0.0002 -
Gear Spoofing Attack 0.8224 0 0 0.0001 -
RPM Spoofing Attack 0.7775 0 0 0.0002 -

DoS Attack (Known) 0.9806 0.9099 0.9756 | 0.0184 0.9416
E-GAN Fuzzy Attack 0.8717 0 0 0.0002 -
Gear Spoofing Attack 0.8224 0 0 0.0001 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

DoS Attack (Known) 0.9936 0.9819 0.9781 | 0.0034 0.9800

HyDL-IDS Fuzzy {Xttack 0.8715 0.0612 0.0002 | 0.0005 0.0005
Gear Spoofing Attack 0.8221 0 0 0.0001 -

RPM Spoofing Attack 0.7769 0.1042 0.0005 | 0.0011 0.0009

DoS Attack (Known) 0.9993 0.9992 0.9966 | 0.0014 0.9979
CANet Fuzzy Attack 0.8717 0 0 0.0002 -
Gear Spoofing Attack 0.8223 0 0 0.0001 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

DoS Attack (Known) 0.9803 0.9097 0.9740 | 0.0185 0.9408
Rec-CNN Fuzzy Attack 0.8714 0 0 0.0006 -
Gear Spoofing Attack 0.8221 0 0 0.0005 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

In addition, we suggest to take predicting time and memory
consumption metrics together for a comprehensive evaluation
of models’ running performance. From this aspect, we think
that HyDL-IDS, CANet and Rec-CNN have a higher running
performance due to their relatively less predicting time and
memory consumption, lower than 0.5 ms per message and 70
MB respectively. On the other hand, LDAN is also considered
as having a good running performance for the reason that it
has the lowest memory usage, 43.7 MB, and relatively short
predicting time, 0.928 ms per message.

B. Detection Performance Evaluation

According to the experimental setup described in
Section III, we tried to replicate each of the models
described above and got the results shown in Table VI.
Since IDS is an active protective measure, it is sensitive to
false positive, which could interrupt the normal operation of
systems, and needs high detection accuracy, influencing the
effectiveness of IDS. The detailed evaluation and specific
analysis based on experimental results are illustrated from
two aspects presented below.
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Fig. 5.

1) The Ability of Detecting Unknown Attacks: One purpose
of our study is to find out whether the representative intrusion
detection methods have ability of detecting unknown attacks,
which is an inferential capability of detecting simple attacks,
such as DoS, to detecting more complex attacks, like fuzzy
and impersonation attacks. Thus, only DoS attack samples
are adopted as training set, while other types of attacks are
regarded as unknown attacks for models.

As shown in Table VI, we can see that the accuracy of each
method, regardless the type of attacks, is at an acceptable high
level. For example, Reduced Inception-ResNet has 0.9993,
0.8730, 0.8223 and 0.7774 of accuracy for DoS, fuzzy, gear
spoofing and RPM spoofing attack respectively, which seems
to be an acceptable result. However, combining with other
metrics, we find that precision and recall for unknown attacks,
including fuzzy, gear spoofing and RPM spoofing attacks, are
all 0, illustrating that there is no true positive of any type
of unknown attack. The relatively high accuracy in results is
mainly caused by imbalanced datasets, so accuracy metric has
low reference value here.
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Referring to metrics except for accuracy, we can dis-
cover that only CANTransfer, CAN-ADF and HyDL-IDS
can barely detect unknown attacks, while others are not.
In fact, CANTransfer gets the ability to detect unknown fuzzy
attack due to the use of 1-shot transfer learning technol-
ogy. It improves the performance of detecting fuzzy attack
from 0 to 0.9794 of precision, 0.0309 of recall and 0.0599 of
F1-score.

It is worth noting that CAN-ADF and HyDL-IDS get
a bit of ability to detect fuzzy and RPM spoofing attacks
with similar performance. The reason is that CAN-ADF has
combined heuristic algorithm with deep learning models,
defining a rule for detecting unknown attacks. Moreover,
another possible reason is that both CAN-ADF and HyDL-IDS
have taken deep learning structures for extracting spatial and
temporal features of CAN messages. Furthermore, the result
shows that no one model can detect gear spoofing attack as
unknown attack, which indicates that gear spoofing attack may
have the most complex mechanism among all four types of
attacks.
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2) The Comparison of Detecting Known DoS Attacks:
Based on our quantitative experiment, the results of known
DoS attack is used to evaluate the detection performance of
all models and make a horizontal comparison between each
model. Normalized confusion matrices, as shown in Fig. 5,
is taken and shows that all models mentioned in our study
can predict the labels of normal message and DoS attacks
correctly. In addition, accuracy, precision, recall, FPR and
F1-score are calculated and shown in Fig. 6, where the results
can be compared intuitively. As the state-of-the-art intrusion
detection technologies, all methods described in this study
have acceptable performance, with high accuracy (all over
0.98), high precision (all over 0.90), high recall (all over 0.97),
high Fl-score (all over 0.94) and low FPR (all below 0.02).

For a further analysis and comparison, ROC curves are
taken to show more details in Fig. 7. The results demonstrate
that all models have satisfactory detection performance dealing
with imbalanced datasets. It also indicates that CANTransfer

and CAN-ADF perform better under imbalanced datasets.
The reason is that CANTransfer utilizes transfer learning and
CAN-ADF utilizes rule-based framework, both of which are
beneficial to avoid overfitting training and enhance general-
ization ability, hence the imbalanced datasets will have less
influence on these two models.

Moreover, we classify these ten models into three levels
according to the detection performance under DoS attack.
Among all, Reduce Inception-ResNet, CANet and CANTrans-
fer are the top 3 models with Fl-score over 0.99 and FPR no
more than 0.002. Therefore, these three models belong to the
first level for their excellent detection performance. As the
result of having detection performance scores around average
values, CAN-ADF, O-DAE and HyDL-IDS are classified into
the second level. They also have considerable satisfactory
detection performance but are not so perfect as the top three
with scores difference from them about 0.02. The last level
includes LDAN, E-GAN, Rec-CNN and TSP, whose detection
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performance on DoS attacks has a relatively big gap between
them and the first two levels.

V. DISCUSSION AND FUTURE WORK

Having combined running performance and detection per-
formance, we re-evaluated these representative intrusion detec-
tion methods based on the experimental results. Although
Reduced Inception-ResNet has the best detection performance
and Rec-CNN has the best running performance, they lack
good comprehensive performance to be selected as a compar-
ative baseline for in-vehicle environment. By comprehensive
analysis, CANet is the best to be selected as comparative
baseline, which has high-level running performance as well as
the first-level detection performance. In addition, considering
the ability of detecting unknown attacks, HyDL-IDS may be
also a good alternative baseline as the result of its high-level
running and detection performance and its existing ability
for unknown attacks detecting. From this aspect, we can
also find that considering both spatial and temporal features
of attack data may be helpful to learn more about internal
data characteristics and improve the generalization ability of
models, and then models can obtain some ability to detect
unknown attacks.

According to the results of our experiments, we find that the
existing intrusion detection methods based on deep learning
have made the detection performance on CAN traffic reach
a very high degree. For example, Reduced Inception-ResNet,
CANTransfer and CANet all achieve close to 100% detection
scores. However, the challenges of deep-learning-based IDSs
are the ability to detect unknown and sophisticated attacks and
the ability to reduce their time and resource consumption for
embedded systems. These factors will determine whether a
model is suitable to be applied in the resource-constrained in-
vehicle network environment in reality and whether the model
can ensure the safety and security of the CAN bus.

Therefore, the enhancement of models’ detection ability for
unknown attacks, the running speed, as well as the reduction
of resource consumption are suggested for future research in
the field of in-vehicle intrusion detection technology based on
deep learning. Also, we suggest designing feature extraction
architecture with shallow layers based on both time and space
into intrusion detection models and using transfer learning to
improve the generalization ability of models. In this way, the
models can be lightweight enough for an in-vehicle environ-
ment and may get the ability to detect unknown attacks.

VI. CONCLUSION

With the development and popularity of V2X communica-
tion, the connectivity between vehicles and powerful networks
become much more than ever, causing more chances for
attackers to take over a car by CAN. Therefore, many intrusion
detection methods are designed to ensure the security of [VNs,
especially deep-learning-based methods, having much more
capabilities and better performance than traditional algorithms.
However, studies about deep-learning-based intrusion detec-
tion methods in a quantitative and fair horizontal performance
comparison analysis is insufficient. To get valuable conclu-
sions about the selection of proper baseline method under
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TABLE VII
THE ABBREVIATION

Abbreviation  Full Name

ANN Artificial Neural Network

AUC Area Under the Curve

CAN Controller Area Network

CNN Convolutional Neural Network
ConvLSTM Convolution Long Short Term Memory
DAN Dynamic Autoencoder Network

DNN Deep Neural Network

DoS Denial of Service

DT Decision Trees

EBO Ecogeography-based Optimization

ECU Electronic Control Unit

E-GAN Enhanced Generative Adversarial Network
FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

GAN Generative Adversarial Network

DS Intrusion Detection System

IVN In-Vehicle Network

KNN K-Nearest Neighbors

LDAN Lightweight Dynamic Autoencoder Network
LSTM Long Short Term Memory

MLP Multi-Layer Perception

NB Naive Bayes

OCSVM One-Class Support Vector Machine
O-DAE Optimized Deep Denoising Autoencoder
OTIDS Offset Ratio and Time Interval based Intrusion Detection System
RNN Recurrent Neural Network

SVM Support Vector Machine

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

TSP Time Series Prediction

V2X Vehicle-to-Everything

embedded in-vehicle environment, this paper focuses on inves-
tigating and discussing ten representative state-of-the-art deep-
learning-based IDSs: Reduced Inception-ResNet, CANTrans-
fer, CAN-ADF, TSP, O-DAE, LDAN, E-GAN, HyDL-IDS,
CANet and Rec-CNN. By setting quantitative experiment,
this paper discusses the ability to detect unknown attacks,
the running performance and detection performance of these
intrusion detection methods. The result shows that CANet
and HyDL-IDS may be suitable to be selected as baseline
methods for their great comprehensive performance. Also,
we provide significant suggestion and valuable guidance for
the development direction of in-vehicle intrusion detection
method about reducing time delay and resource consumption
and improving the ability of detecting unknown attacks.

APPENDIX
See Table VII.

REFERENCES

[1] H. H. Jeong, Y. C. Shen, J. P. Jeong, and T. T. Oh, “A comprehensive
survey on vehicular networking for safe and efficient driving in smart
transportation: A focus on systems, protocols, and applications,” Veh.
Commun., vol. 31, Oct. 2021, Art. no. 100349.

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on February 10,2023 at 05:59:35 UTC from IEEE Xplore. Restrictions apply.



1854

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2023

J. P. Jeong et al., “A comprehensive survey on vehicular networks for
smart roads: A focus on IP-based approaches,” Veh. Commun., vol. 29,
Jan. 2021, Art. no. 100334.

E. Aliwa, O. Rana, C. Perera, and P. Burnap, “Cyberattacks and
countermeasures for in-vehicle networks,” ACM Comput. Surv., vol. 54,
no. 1, pp. 1-37, Apr. 2021.

G. Loukas, E. Karapistoli, E. Panaousis, P. Sarigiannidis, A. Bezemskij,
and T. Vuong, “A taxonomy and survey of cyber-physical intrusion
detection approaches for vehicles,” Ad Hoc Netw., vol. 84, pp. 124-147,
Oct. 2019.

H. Ji, Y. Wang, H. Qin, Y. Wang, and H. Li, “Comparative performance
evaluation of intrusion detection methods for in-vehicle networks,” IEEE
Access, vol. 6, pp. 37523-37532, 2018.

T. Moulahi, S. Zidi, A. Alabdulatif, and M. Atiquzzaman, “Compar-
ative performance evaluation of intrusion detection based on machine
learning in in-vehicle controller area network bus,” IEEE Access, vol. 9,
pp- 99595-99605, 2021.

D. Swessi and H. Idoudi, “Comparative study of ensemble learning tech-
niques for fuzzy attack detection in in-vehicle networks,” in Advanced
Information Networking and Applications, L. Barolli, F. Hussain, and
T. Enokido, Eds. Cham, Switzerland: Springer, 2022, pp. 598-610.

B. Groza and P.-S. Murvay, “Efficient intrusion detection with Bloom
filtering in controller area networks,” IEEE Trans. Inf. Forensics Security,
vol. 14, no. 4, pp. 1037-1051, Apr. 2019.

Y. Lin, C. Chen, F. Xiao, O. Avatefipour, K. Alsubhi, and A. Yunianta,
“An evolutionary deep learning anomaly detection framework for in-
vehicle networks—CAN bus,” IEEE Trans. Ind. Appl., early access,
Jul. 17, 2020, doi: 10.1109/TIA.2020.3009906.

Y. Sun, H. Ochiai, and H. Esaki, “Intrusion detection with segmented
federated learning for large-scale multiple LANS,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1-8.

A. Jolfaei, N. Kumar, M. Chen, and K. Kant, “Guest editorial introduc-
tion to the special issue on deep learning models for safe and secure
intelligent transportation systems,” IEEE Trans. Intell. Transp. Syst.,
vol. 22, no. 7, pp. 4224-4229, Jul. 2021.

A. Mchergui, T. Moulahi, and S. Zeadally, “Survey on artificial intelli-
gence (Al) techniques for vehicular ad-hoc networks (VANETS),” Veh.
Commun., vol. 34, Apr. 2021, Art. no. 100403.

K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim, “Cybersecurity
for autonomous vehicles: Review of attacks and defense,” Comput.
Secur., vol. 103, Aug. 2021, Art. no. 102150.

W. Wu et al., “A survey of intrusion detection for in-vehicle networks,”
IEEE Trans. Intell. Transp. Syst., vol. 21, no. 3, pp. 919-933, Mar. 2020.
S. Sharma and A. Kaul, “A survey on intrusion detection systems and
honeypot based proactive security mechanisms in VANETs and VANET
cloud,” Veh. Commun., vol. 12, pp. 138-164, Apr. 2018.

M. Keramati, “An attack graph based procedure for risk estimation of
zero-day attacks,” in Proc. 8th Int. Symp. Telecommun. (IST), Sep. 2016,
pp. 723-728.

H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS: A novel intrusion
detection system for in-vehicle network by using remote frame,” in Proc.
15th Annu. Conf. Privacy, Secur. Trust (PST), Aug. 2017, pp. 57-66.
H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion
detection using deep convolutional neural network,” Veh. Commun.,
vol. 21, pp. 1-13, Jan. 2020.

H. Qin, M. Yan, and H. Ji, “Application of controller area network
(CAN) bus anomaly detection based on time series prediction,” Veh.
Commun., vol. 27, Jan. 2021, Art. no. 100291.

G. Xie, L. T. Yang, Y. Yang, H. Luo, R. Li, and M. Alazab, “Threat
analysis for automotive can networks: A GAN model-based intrusion
detection technique,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7,
pp. 44674477, Jul. 2021.

R. Zhao et al., “An efficient intrusion detection method based on
dynamic autoencoder,” IEEE Wireless Commun. Lett., vol. 10, no. 8,
pp- 1707-1711, Aug. 2021.

S. Tariq, S. Lee, and S. S. Woo, “CANTransfer: Transfer learning based
intrusion detection on a controller area network using convolutional
LSTM network,” in Proc. 35th Annu. ACM Symp. Appl. Comput.,
Mar. 2020, pp. 1048-1055.

S. Tariq, S. Lee, H. K. Kim, and S. S. Woo, “CAN-ADF: The controller
area network attack detection framework,” Comput. Secur., vol. 94,
Jul. 2020, Art. no. 101857.

W. Lo, H. Alqahtani, K. Thakur, A. Almadhor, S. Chander, and
G. Kumar, “A hybrid deep learning based intrusion detection system
using spatial-temporal representation of in-vehicle network traffic,” Veh.
Commun., vol. 35, Jun. 2022, Art. no. 100471. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214209622000183

[25]

[26]

[27]

M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “CANet: An
unsupervised intrusion detection system for high dimensional CAN bus
data,” IEEE Access, vol. 8, pp. 58194-58205, 2020.

A. K. Desta, S. Ohira, I. Arai, and K. Fujikawa, “Rec-CNN: In-vehicle
networks intrusion detection using convolutional neural networks trained
on recurrence plots,” Veh. Commun., vol. 35, Jun. 2022, Art. no. 100470.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2214209622000171

Y. Yang, G. Xie, J. Wang, J. Zhou, Z. Xia, and R. Li, “Intrusion detection
for in-vehicle network by using single GAN in connected vehicles,”
J. Circuits, Syst. Comput., vol. 30, no. 1, Jan. 2021, Art. no. 2150007.

Kai Wang received the B.S. and Ph.D. degrees
from Beijing Jiaotong University. He is currently an
Associate Professor with the Faculty of Computing,
Harbin Institute of Technology (HIT), China. Before
joining HIT, he was a Post-Doctoral Researcher
in computer science and technology with Tsinghua
University. He has published more than 40 papers
in prestigious international journals and conferences,
including /EEE Network, IEEE SYSTEMS JOUR-
NAL, IEEE TRANSACTIONS ON NETWORK AND
SERVICE MANAGEMENT, and ACM Transactions

on Internet Technology. His current research interests include lightweight

and

intelligent security technologies, such as deep learning applications on

industrial control network or in-vehicle network intrusion detection. He is a
Senior Member of the China Computer Federation (CCF).

&
K

Aiheng Zhang received the B.S. degree in computer
science and technology from the Beijing University
of Technology, Beijing, China. She is currently
pursuing the master’s degree in computer technol-
ogy with the Harbin Institute of Technology (HIT),
China. Her research interests include intelligent and
lightweight in-vehicle intrusion detection models.

Haoran Sun received the B.S. degree in com-
puter science and technology from Jilin University,
Changchun, China, and the master’s degree in com-
puter technology from the Harbin Institute of Tech-
nology (HIT), China. He is currently an Engineer
with the Big Data Center, State Grid Corporation
of China. His research interests include transfer
learning and data-sample-generating methods for in-
vehicle intrusion detection.

Bailing Wang received the Ph.D. degree from
the School of Computer Science and Technol-
ogy, Harbin Institute of Technology (HIT), China,
in 2006. He is currently a Professor with the Faculty
of Computing, HIT. He has published more than
80 papers in prestigious international journals and
conferences, and has been selected for the China
national talent plan. His research interests include
information content security, industrial control net-
work security, and V2X security.

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on February 10,2023 at 05:59:35 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TIA.2020.3009906


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


